
M

NASA Technical_ Memorandum 106315

Flexible Method for Inter-Object
Communication in C++

Brian P. Curlett and Jack J. Gould

Lewis Research Center

Cleveland, Ohio

November 1994

National Aeronautics and

Space Administration

(NASA-TM-106315) FLEXIBLE METHOD

FOR INTER-OBJECT COMMUNICATION IN

C++ (NASA. Lewis Research Center)

26 p

N95-17420

Unclas

G3/61 0031430

Flexible Method for Inter-Object Communication in C+÷

Brian P. Curlett and Jack J. Gould

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

Summary

A method has been developed for organizing and sharing large amounts of information between

objects in C++ code. This method uses a set of object classes to define variables and group them

into tables. The variable tables presented here provide a convenient way of defining and cataloging

data, as well as a user-friendly input/output system, a standardized set of access functions, mech-

anisms for ensuring data integrity, methods for interprocessor data transfer, and an interpretive

language for programming relationships between parameters.

The object-oriented nature of these variable tables enables the use of multiple data types, each

with unique attributes and behavior. Because each variable provides its own access methods,

redundant table lookup functions can be bypassed, thus decreasing access times while maintaining

data integrity. In addition, a method for automatic reference counting was developed to manage

memory safely.

1 Introduction

Object-oriented programming techniques solve many of the problems involved with data organiza-

tion in large software systems. These techniques accomplish this by encapsulating the data, along

with the methods of solution, for a particular piece of the problem. However, difficulties still arise

when objects have to share the same data. This also poses the problem that each object must

provide its own input/output (I/O) methods and its own data validation methods. This report

presents our solution to these problems.

Our approach uses a set of C÷+ classes that define and organize the attributes of an object.

In addition to the value of the attribute, these classes can store other relevant information, such

as a description of the attribute, the default value, and limits. They can also group attributes into
tables. We refer to these attribute classes as variables and to the tables as variable tables or data

dictionaries. The variable tables provide a convenient way to define and catalog data, as well as

a user friendly I/O system, a standardized set of access functions, mechanisms for ensuring data

integrity, and an interpretive language for programming relationships between parameters.

Using variable tables as a compromise between a full-blown data base management system and

simple global data structures is not a new idea. Variable tables based on the same basic principles

as this one have been used successfully for engineering applications by others. Kroo [1] used a

variable table for an aircraft design system written in FORTRAN. He indicates that this method

of data storage greatly enhanced the extensibUity and maintainability of his system. Curlett [2]

used a variable table programmed in C for graphical user interface applications, also with success.

A variabletablewritten in C or FORTRANmaintainsdataintegrity by prohibitingany direct

access to the data in the table. Instead, the programmer must use set and get functions to store or

retrieve data, respectively. These functions pass a key (usually a string representing the variable

name) with each set or get call. The table must be searched for the key before the data can be

manipulated.

With the object-oriented variable table presented here, the programmer does not need to search

the table every time the program needs to access a variable. Instead, the programmer looks up the

variable object once, stores its address, then accesses it directly without going through the table.

Data integrity is maintained because the variable object has its own set and get functions.

There are several other advantages to an object-oriented variable table. One is that new variable

types can be derived easily by using inheritance from existing types. Another is that a variable table

may itself be a variable, and therefore, be stored within another table. This permits hierarchical

variable tables to be constructed as a tree, similar to the way a DOS or UNIX file system is

constructed. In addition, the function and operator overloading capabilities in C++ make for a
robust interface to the variables and tables.

The use of this object-oriented variable table can save the programmer many hours by elimi-

nating much of the mundane work involved in programming data structures and data I/O routines.

Use of this table can also save the program user many hours because of its built-in data vaiidation,

easy-to-read file formats, and programmability.

This report explains the variable table concept and the features of this implementation in detail.

The reference manual that is included with the source code should be referred to for programming

details. Anyone programming with our variable table code should be familiar with this report.

This report will also be of interest to C++ programmers looking for alternative data-handling

techniques. We assume a basic understanding of object-oriented programming terminology and the

C++ programming language [3].

This report first gives an overview of variable tables. Section 3 then discusses the class hierarchy

of the variables. Sections 4 and 5 describe the file formats for defining variables and entering values,

respectively. Section 6 describes how to use these classes in a C++ program, and section ? describes

a template class that links existing data types into the variable table. Some ideas for adding time

history storage are presented in section 8, and section 9 explains how the built-in programming

language works. Sections 10 and 11 explain some additional functionality in the variable classes

for supporting graphical user interfaces and distributed processing, respectively. Finally, section 12

discusses how to use reference counting for memory management.

2 Overview

Before discussing the class structure and the programming details, we first look at how these variable

tables are used in an object-oriented program. We use variable tables for objects that represent

major components of a program, objects that need to interact with the user through an interface,

or objects that have many I/O parameters. This code was developed primarily as part of a large

simulation framework. The major objects in this framework are referred to as components. In this

report, the term component refers to an object that uses the variable table.

When a component is created, it loads a file that defines the variables in its table. This file

is called the data definition file. (See section 4 for details; fig. 2 shows an example.) The data

definition file contains information such as variable type, variable name, minimum and max/mum

allowable values of the variable, default value, help information, and a label string. We have defined

eight types of variables that can be created: basic, numeric, option, Boolean, string, file, link, and

table. The attributes in the definitionfile dependon the type of variable. A plain ASCII text

definition file stores this information in a convenient format that allows users to modify it quickly

without recompiling the code.

Because there may be several instances of a given component type, it is desirable to store the

values and definitions of the variables in separate files. Functions are provided to read these files

of "instance" values after the definition files have been loaded. These files are referred to as input

files. Section 5 explains the use of I/O files, and figure 3 shows what one of these files may look
like.

After the component loads its table and reads its instance values, it can search the table for

variables by using the variable name as the search key. The search function returns a pointer to

the variable object. This pointer can be stored in the component to avoid subsequent searching.

Because the variable itself is an object and provides safe access mechanisms to the data within

(there are no public data in a variable object), the storage of this object pointer does not pose a

problem with maintaining data integrity.

The component can now use set and get functions to store and retrieve data to and from the

variables. These functions take on slightly different forms depending on the type of variable, but the

syntax is kept as similar as possible to avoid confusion. For convenience, some types overload the

set function and provide multiple get functions to retrieve data in different formats. For example,

a numeric variable can be set by passing it a number or an equation as a character string. Some

operators have also been overloaded for convenience. Section 6 explains how to use lookup, set,

and get functions in a program.

So far, we have described only functionality for cataloging the attributes of a component, but

our major objective is to provide a mechanism for sharing data between components. This is done

by placing each component 's variable table into a global variable table. The system and other

components can then access any data by specifying the component's table name followed by a

backslash (\) and then the attribute's name while searching the main variable table.

Next we consider a graphical user interface for an engineering application. In this application,

two objects need to share the same data. One object represents the analysis of a part, and the other

object displays information about that part on the screen. By using a variable table, we can program
the two objects independently from one another, but the objects can still interact. Callbacks,

functions called when a variable's value is changed, are added to the variable by each object. So

when one object changes the variable's value, the other object can update itself. With this method,

the analysis portion of the code is completely oblivious to the user interface; it needs only to save

its data into its variable table, and the user interface will update its display automatically. The

separation of the user interface and analysis programming tasks greatly simplifies the development

of a large simulation program. These same mechanisms for data communication are used between

two analysis components and between analysis components and the system solver. Section 10

discusses further the use of variable tables in conjunction with a graphical user interface.

3 Class Hierarchy

All variables, including variable tables, are derived from the Var class (fig. 1). The Var class

holds information common to all variables, such as name, label, and help information. Because all

variables can be declared as arrays, Var also stores array dimensions. The Var class provides access
functions to all these data.

The VarNumeric class stores information for numeric data types. There is no distinction between

integer and floating point data in this class. In addition to the value of the variable, the VarNumeric

3

g

C VarLink) List

VarData VarTable

VarOption

Figure 1: Variable table class structure.

class stores the default value, minimum allowable value, and maximum allowable value. All four

of these parameters are stored as one-dimensional arrays of "smart" pointers to objects of the Eq

class, which are dynamically allocated as needed by the VarNumeric class (see section 9). The

Eq class stores and evaluates equations. It can store a character representation of the datum, a

pointer to the parse tree of the string, and a double-precision floating point number. The tree is

stored so that the character string does not need to be re-parsed each time the equation needs to

be evaluated. If a floating point number is entered instead of an equation, no parse tree is needed,

and therefore, it is not constructed. The Eq class is completely in line and, therefore, does not slow
the execution of the VarNumeric class.

The VarBoolean class is derived from the VarNumeric class for handling Boolean data types.

Boolean is normally a True/False (1/0) selection, but it can be used to select between any two values.

VarBoolean uses the same storage as VarNumeric; a value equal to the minimum is considered False,

and a value equal to the maximum is considered True.

An option, or enumerated, data type is also derived from the VarNumeric class. This class is

called VarOption. The VarOption class allows the user to choose one value from a list of options.

A class for handling character string data is also provided. This class, which is derived from the

Vat class, is called VarString. VarString stores an array of pointers to character strings. It also

stores default values.

VarFile, a class for handling files, is derived from VarString. VarFile primarily distinguishes

between file names and other strings in a graphical user interface. The VarFile class also stores

attributes for the directory name and the file search mask.

All the variable classes mentioned previously store their values internally. There are cases

where the user will want to access the values of an object either directly or through member

functions. Two parameterized classes provide this functionality: VarLink<ClassName,TypeName>

and VarData<TypeName>. Using these classes eliminates the need for updating the variable table

when the object's value changes. VarLink allows the user to set and get through member functions.

This is very helpful for cases where a member function causes side effects in the object when it sets

or gets a value or when the value is not stored but derived from other values.

VarTable is a container class that holds other variables. This class inherits from both the List

container class and the Vat base class. Because the VarTable class is derived from the Vat class, a

VarTable object is itself a Vat and can, therefore, be placed in other VarTable objects.

4 Data Definition File

Although variables and tables can be created programmatically, we recommend that they be loaded

from a file. This section explains how to create fries that define variable tables. These fries are

called data definition files.

As stated previously, there are eight types of variables that can be entered through a definition

file. They are

Var -- basic variable, holds only the label and help information

VarString -- holds character string data

VarFile -- holds file names

VarNumeric -- holds numerical data

VarBoolean -- holds Boolean (True/False) data

VarOption -- holds enumerated data

VarLink --].inks a variable to data stored elsewhere

VarTable -- holds other variables

All the data types use basically the same input syntax; however, attributes for each type differ.
See the reference manual that is included with the source code for a list of attributes that can be

defined for each variable type in the definition file.

The grammar for defining a variable is shown in appendix A. The input is similar to that for

declaring structures in the C programming language. A variable or variable table is introduced by

a type-name followed by an identifier. The keyword 1;ypedef can prefix a variable table definition

to introduce the name of the new variable table as a type-name for declaring subsequent variable
tables.

Following the definition of the variable, the variable's attributes can be entered in a statement

block surrounded by braces. The name of the attribute is followed by an equals sign, then the value
of the attribute. The order in which the attributes are entered does not matter.

Some attributes can be entered as one- or two-dimensional arrays. In this case, the elements

of the array are separated by commas. Two-dimensional arrays are indexed by row first as in the

C programming language (in FORTRAN the indexing is reversed). Subscripts also can be used to

indicate the position in an array. Array subscripts start at 0 (not 1).

VarNumeric x[20] {

max IS] = S;

max[lO] ffii0;

max[15]ffi15,16, 17, 18, 19;

}

Character string attributes should be placed in double or single quotation marks. For example,

VarString names[2] {

default = "apples, pears, grapes", "beef, pork";

}

5

Without quotation marks, the string would have been split at the first comma after "apples."

White space in the definition file has no significance. Also, C and C++ style comments can be

used before or after any input line in the file. However, comments are not valid in the middle of an

expression.

Multiple instances of the same variable definition can be created by placing an identifier list

and a semicolon after the variable definition. For example,

VarNumeric xx {

min=O; max=lO ;

label = 'label line for xx, yy, and zz';

} yy, zz;

the variables xx, yy, and zz all share the same definition.

A definition of a variable table be#ns as for any other variable. All variables within the definition

of the table are considered part of that table. Unlike variables, a variable table definition must

be followed by a semicolon. The semicolon can be preceded by an optional identifier list, which

names variable tables that are copies of the variable table just defined. An example of a simple

data definition fie is shown in figure 2.

// C and C+÷ style comments may be used

VarTable Inpuz {

label = "label line for VarTable Inpu¢";

help = "help info for VarTable Input";

VarString name {

Label = "Enter a name for this component:"

default = "Turbine";

}

VarNumeric YY {

label = "Enter one-llne label strin E here";

help = "Mulziple lines of help information

may be entered here." ;

default = i0;

}

VarNumeric XX[2] [3] {

label = "Enter one-line label string here";

default - 0, YY, 2*YY, 3*YY, 4*YY, 5*YY;

min = 0,0,0,0,0,0;

max = 100,200,300,400,500; // max[l] [2] is undefined

}

} InpuCs_2, Inputs_3; // end of VarTable Input

Figure 2: Sample input data definition file.

The example constructs a variable table that has three variables. The first variable is a string,

the second is a numeric variable, and the third is a two-dimensional array of numeric variables.

6

Two copies of this table are made and given the names Inputs_2 and Inputs..3.
Sometimes it is desirable to include one definition file in another. If, for example, several

components all share some common subcomponent, then the definition file for each component

can include the same definition file for the subcomponent. This is done by using an #include

statement.

VarTable TI {

%include "input_port. def"

#include "output_port.def"

#include "mech_port. def"

}; // end of T1

The contents of the three fries specified are included in the definition file for T1. The only re-

quirement for using "include" files is that the resulting input, when read in the specified order, be

syntactically correct. There is no restriction on the nesting of files or on the resulting input size.

The path for locating the include files is the same as the path for locating the definition file.

5 Input/Output Files

This section describes the I/0 syntax used for variables and variable tables. Since I/O functions are

called recursively for subtables, the easiest method for handling all input and output to a program

is to place all tables in one main variable table and read and write that table from and to an I/O

stream.

Figure 3 shows a simple I/O file.

main {

T1 {

AA=3.5;

XX=I,2,3;

YY=2*XX [1] ;

}
T2 (

ZZ=\TI\AA;

}
}

Figure 3: Sample input/output file for a variable table.

The input file is free format. White space is ignored, and an input line ends with a semicolon. A

table is started with the table name followed by a left brace, and the table ends with a corresponding

right brace. This ensures proper nesting of the tables. All input data within the braces are part
of that table. It is helpful to include C++ style comments at the end of a table. This is done

automatically if the table is output in this format.
The order in which variables occur in a table does not matter. Arrays are treated the same

as in the definition file. It is not a requirement to input all variables in a table. However, it is

erroneous to specify a variable in a table that does not exist in that table.

Note that the variable ZZ is programmed to be equal to the value of variable AA in table T1.

The backslash (\) in front of the table name means "start the search for that variable in the main

variabletable." That is, the string "\TI\AA" means"find thetableT1 in the mainvariabletable,
thensearchthat table for the variableAA."

An alternativemethodto groupingall variablesin nested tables is to specify each variable name

with the table name and a back slash(\) preceding it. For example,

main

TI\AA=3.5 ;

TI\XX= 1,2,3;

TI\YY=2*XX [1];

T2\ZZ=\TI\AA;

>

isequivalentto the input fileshown in figure3.

C and C++ style comments can be used in the input file with the restrictions mentioned in

section 4.

If a label string exists for a given variable, the output file includes this label as a comment after

the variable and value.

T1 _ // Label for %able TI is placed here

AA=3.5; // Label line for AA

XX=I,2,S; // Label line for array XX

>

Although the labeling information stored with each variable is intended primarily for the user

interface, it does make these I/O files easily readable and is quite useful for batch-oriented programs.

The labels in an older input file can be updated to the labels in a newer definition file by running

a simple program that reads the table and writes it back out. Such a program is presented in

section 6 to explain the basics of using variable tables in a C++ program.

6 Programming with Variable Tables

This section discusses some of the most frequently used methods. Details on all the methods

available are given in the reference manual that is included with the source code.

Every program using variable tables must have at least two tables constructed: MainVarTable

(the top level table) and calcVarTable (the table used for temporary variables by the calculator,

section 9). The Vat: :Initialize() static member function creates these two tables for the user
and does all the other necessary setup. The main program should start llke this:

// this includes all the Vat class header files

#include <VarClasses. H>

main ()

Vat: :Initialize() ;

//...

>

6.1 Loading a Definition File

After MainVarTable and CalcVarTable are created, other variables are created by loading them

from definition files. The function load() is used to load a variable from a stream. The user has

the option to read the entire file, which is the default, or to read one variable at a time.

The user also has the option of using a global parser or a parser that is local to the variable

table. The global parser is the default and is the most useful. The local parser option is useful

ifthe user wants to read values for multiple variable tables asynchronously, load() isa member

function of VarTable and can be used as shown below:

ifstream strm("myTable.def") ;

VarTable *myTable = new VarTable("myTable");

Var *new_var;

II read entire file using global parser...

myTable->load(strm);

// or

strm >> myTable;

I/ read entire file using local parser...

myTable->1oad(strm, readAllVariablss, useLocalScanner);

I/ read first complete variable using global parser...

myTable->load(strm, readSingleVariable);

// read first complete variable using local parser...

myTable->load(strm, readSingleVariable, useLocalScanner) ;

The load() function returns a pointer to the last variable read from the input stream. If a

table is read, then a pointer to the table is returned--not a pointer to the last variable in the table.

The programmer should check the existence and type of Vat returned from load() before

attempting to cast it to VarTable.

Var *imp = myTable->load(cin);

if (imp == NULL [[!zmp->isA(VarTableClass)) {

cerr << "Invalid inpul;\n";

exit (1) ;

}

VarTable *tab = (VarTable *) imp;

The isA() method willreturn True ifthe object *trap isof the VarTable classor of a class derived

from VarTable. VarTableClass is part of an enumeration that identifiesall the classes. The

classType() method returns thisenumerated value. The if statement just given could have been

written as

if (imp == NULL II tmp->classType() != VarTableClass) { //... }

However, if a new type of table class was derived from the VarTable class, the latter method would

produce an error. Which of these two methods is more appropriate to use will depend on the

circumstances.

6.2 Input/Output Methods

Each variable has methods for writing its definition and values to an output stream. Information

is input solely through the input parser, which can differentiate between variable definitions and

variable assignments. To make variable table output convenient, there are three output manipu-

lators, which include varFormaz(), varDef(), and varlnp(). Each of these has a pointer to a

variable table as its sole argument, varDef() writes the variable table definition (e.g., name, label,

help, min, max, etc.) to the output stream, varlnp() writes the values (e.g., xx = 1.1234;) to the

output stream, varForma'c() writes varDef() followed by varlnp() to the output stream. The

following two statements are equivalent:

cou¢ << varDef(myTable) << varInp(myTable);

cou¢ << varFormat(myTable);

We are now ready to write a program for reformatting an input file.

#include <VarClasses. H>

int main(int argc, char** argv)

{
Vat ::Initialize() ;

MainVarTable->load(argv [1]);

cin >> *MainVarTable;

cou¢ << varInp(MainVarTable);

l/ load the definition file

// load the instance values

// write out the instance values

return 0;

}

This program loads a variable table or tables from the file specified on the command line. It reads

input values from standard input and then it writes all the values back out (nicely) to standard

output. Of course, a real program should test for the existence of the definition file and make sure

that the table was correctly loaded.

6.3 Locating Variables

As just illustrated, variables are usually created by loading variable tables from data definition files.

A particular variable in a table can be accessed by using the lookup() method.

Var *imp = tab->lookup("xx");

if (imp == NULL II zmp->classType() != VarNumericClass) {

// handle error

}

VarNumeric *v_xx = (VarNumerlc *) _mp;

Because lookup() is often used just to check the existence of a variable, it does not produce

any type of error message; if it cannot find a variable, it returns NULL. It is critical that the

programmer check the returned value for existence and type before using it!

Convenience routines are provided to simplify the error checking and type casting; these are

lookupSCring, lookupFile, lookupNumeric, lookupOption, lookupBoolean, and lookupTable.

These functions will print an error message if a variable of the correct type is not found. They

return a pointer cast to the correct type. For example, the previous code fragment could have been
written as

VarNumeric *v_xx = tab->lookupNumeric("xx");

if (v_xx -= NULL) { // handle error }

I0

Although these convenience functions will print a warning message if the lookup fails, they

will not stop the execution. UntU more sophisticated error handling becomes available for our

framework, the calling routine is responsible for trapping the error.

Note that it is not necessary to specify MainVarTable when searching the main variable table.

For example, lookupNumeric (name) is the same as MainVarTable->lookupNumeric (name).

To avoid redundant lookups, it is usually best that each major component in a simulation

program have its own variable table. This table is loaded from the file during the construction of

that component. Variable pointers are then looked up from the table during the construction of

the component.

Sometimes it is desirable to operate on all the values in a table without having to use lookup()

for each variable. This is done with the [] operator. The [] operator takes an array index as an

argument and returns a pointer to the variable at that location in the table. For example,

for (int i=O; i < tab->size(); i++)

cout << (*tab)[i]->getName() << endl;

prints the name of each variable in the VarTable *tab to standard output.

6.4 Accessing Values

When to retrieve data from a variable depends on the use of the variable. Some variables may be

constant. In this case, their value needs to be retrieved only once during a component's construction.

The values of some variables may be modified by other objects. In this case, the value of the variable

may have to be retrieved each time it is used in the component. In other cases, a variable is used

for data output only; therefore, its value may never need to be retrieved by the component.

Functions are provided to retrieve all attributes of each Vat class. These are discussed in

the reference manual. Some attributes can be retrieved in more than one format. For example,

the VarNumeric class provides functions to retrieve a value as double or as char * (the latter is

important for user interface programming). Because C++ does not support overloading on the

basis of the returned value of a function, dii_erent names had to be given to functions with different

return data types. However, set functions are named the same regardless of the type of data being

passed to the object.

The following code fragments will help clarify how variables are used in a program.

VarNumeric *var = lookupNumeric ("\\TI\\CC");

if (var == NULL) {

/, handle error */

}

double cc = vat->get(); // returns first numerical value in \TlkCC

cc = var->get(1); // returns second numerical value in \TIkCC

cc = (*var)[I]; // same as preceding fragment w/ different syntax

double *arr = var->getArray(2,3); // returns an array of 3 values

// starting at index 2

char $*str = var->getStrings(2,3); // returns an array of 3 strings

// starting at index 2

var->set(lO.O);

var->set(20.O,1);

var->set("lO.O,20.O");

// sets the first value to 10.0

// sets the 2nd value in the array to 20.0

// sets ist and 2nd values using a string

II

The [] operator for the VarBoolean class returns True or False. For the VarString and VarFile

class, this operator returns const char*.

6.5 Callbacks

A callback is a procedure registered with a variable object. The callback is invoked as a side effect

from an operation on the variable. For example, the VarValueChangedCallback is invoked when
the value of the variable is modified, and the VarDestroyedCallback is invoked just before the

variable is deleted.

Callbacksare added by using the addCallback(type, CB, clientData) member function.

The firstargument (type) isan enumeration indicatingthe type of callback.This can be one of

the following:

VarValueChangedCallback -- call when value changes.

VarDestroyedCallback -- call just before a Var is deleted.

The second argument (CB)isa pointerto the callback.The thirdargument (clientData) isa

pointerto some additionalpieceof data to be passed to the callback.

The callbackfunctionhas two arguments. The firstisa pointerto the variableinvoking the

callback,and the second isthe clientData pointer.Here isan example ofhow a callbackcan be

used to automaticallyupdate a classattributewhen the correspondingvariableobjectismodified.

#include <VarClasses.H>

class X {

double xx;

public:

X (VarTable *) ;

static void xx_changed(Var *, void *);

//...
}

// this function is called when the value of variable xx is changed

void X: :xx.changed (Var *vat, void *p)

{

((X*)p)->XX = ((VarNumeric *) var)->get();

}
// constructor for the class X

void X: :X (VarTable *tab)

{

VarNumeric *v_xx = tab->lookupNumeric("xx") ;

v_xx->addCallback (YarValueChangedCallback, xx_changed, this) ;

//...
}

The callback function xx_changed() has to be a static member function in order to correctly pass

its address to the variable object. Therefore, the this pointer is passed to the callback as client

data in order to identify which object of class X is to be operated on. The callback uses get() to

retrieve the new value of the variable and sets the corresponding double in the object pointed to

by p.

12

7 Using VarLink

Sometimes it is desirable to use the cataloging and I/0 features of the Vat classes with other data

types, for example, the user's favorite matrix class. And sometimes access speed considerations
make it more desirable to use a double rather than a VarNumeric within a class. To accommodate

these needs, we devised the VarLink and VarData classes.
VarLink is a set of classes that allow the user to interact with an object through member

functions or by directly accessing object attributes. Essentially, a VarLink is a variable linked to

its value through a pointer to an object and a pointer to a member function or an attribute of that

object.

The implementation relies on templates to provide the ability to use nearly any combination

of class type and data type. Creating a VarLink requires type information for both the class (T)

and the value (D) being accessed; this information is used to define a two-parameter template class,

VarLink<T,D>. For example, a VarLink to access a double in the class myClass would be created

with the following template: VarLink<myClass, double>.

Actually, the sole purpose of the VarLink class is to provide an interface to a set of classes that

store the values of the pointers mentioned previously. Which of these classes is chosen depends on

what arguments are used to identify the object data. The choice depends on whether the value is

accessed directly or through member functions and on whether the variable's permission is read

only or read/write. This implementation was inspired by the Envelope/Letter idiom described by

Coplien [4].
Once a VarLink has been created, only the type of value is needed. The VarData class is used

to interface with the variable once the variable is defined.

8 Storing the Time History of a Variable

In some simulations, it is necessary to record the variation of a variable over time. We have devised

several solutions to this problem.

1. The variation of a variable over time could be recorded by declaring each variable as an array

and indexing the arrays during each time step for the simulation. This solution, however,

would prohibit arrays from being used for other purposes and/or it would confuse the use of

the arrays because they would have too many subscripts.

2. A second method for recording transients is to write variable tables to a file. Although this

would be sufficient for storing data, it would not be an adequate solution for programs that

need to revisit previous time steps frequently.

3. Yet another method is to store all the transient data in memory. This could be done by

making a copy of the variable table for each time step. If all the data for a variable were

stored within it, the memory requirement would be N • S, where N is the number of time

steps to be saved and S is the size of the variable. This, of course, would require more real

memory than most systems have for all but the simplest of problems. However, because the

strings and equations are not stored in each variable but in separate objects, these value data

can be shared between all copies of a variable, greatly reducing the total memory requirement.

Only when an attribute of a variable changes is more memory allocated. Reference counting

on string and equation Objects ensure_ that new memory is allocated when needed and that

old memory is freed when it is no longer used. This method has the advantages that all

attributes of a variable may change over time, and the user needs only to index a pointer

13

to the variable table to change the time step. An easy way to implement this method is to

create a VarTable that holds the pointers to the tables for each time step. For example,

// read one copy of the variable table from file

VarTable *tab = new VarTable("MyTable");

ifstream strm("MyTable, def") ;

tab->load(strm) ;

// create a table to hold transients

VarTable *time = new VarTable("time");

time.add(tab); // add first time step Go _ime table

// make a copy of the table for each time step and load values

strm >> hum°time_steps >> tab;

for (int i=l; i < num_time_steps;

tab = new VarTable (tab);

time.add(tab);

strm >> tab;

}

i++) {

// use copy constructor

// add time step to time table

// read values from input stream

Notice that the input stream (sirra) needs only to contain the values that have changed from

the previous input case. This is similar to FORTRAN namelist input. To loop back through

the time steps,

for (int i=O; i < time->size(); i++) {

tab = (*time)[i]; // tab points to the current _able

process(); // do some calculation

}

If all data in the simulation are transient, then the user should replace tab with MainVarTable

in this example. Because the VarTable class dynamically redimensions itself as needed, there

is no limit on the number of time steps that can be recorded. In fact, to save memory, the

user should make hum_time_steps small initially, and add more time steps as needed. The

disadvantage of this method is that it requires more memory to be duplicated than is usually

necessary.

. Our final method for recording time histories of data, which will further reduce memory

requirements, is to duplicate the array of pointers in each Vat class that store the values of

the data. For example, the VarNumeric class has four arrays of smart pointers to Eq objects.

These arrays are for minimum, maximum, default, and value. In most cases, however, only

the value array changes over time. Therefore, there is no need to duplicate the arrays of

smart pointers for minimum, maximum, and default values as would be done in the previous

method. In this case, each variable contains an additional array of pointers that point to the

array of Eqs, strings, or doubles that would be used for each time step. Furthermore, each

Var would have to have a method for changing the time step of the variable. A table would

have to have a method to change the time step for _ the variables in the table. This type of

transient support is created for each variable that is declared with the attribute ntime to be

greater than one. The Var classes must be compiled with the VAR_TR_NSIENT option to use
this method.

14

The best method for storing transient data will depend on the application. If memory is limited,

scheme 2 (storage in a file) may have to be used. Scheme 3 requires the most memory. But changing
all variables from one time step to the next can be as fast as indexing one pointer. Scheme 4 requires

less memory than scheme 3 but takes slightly longer to change time steps, and scheme 4 does not

make all the information in a variable time dependent.

9 The Calculator

The calculator is used from within the Eq (equation) class. It converts equations, entered as charac-

ter strings, into a tree structure that can be evaluated to a double-precision floating point number.

This section describes the calculator parser and the tree structure for storing and evaluating ex-

pressions.

The calculator supports predefined constants, logarithmic functions, trigonometric functions,

scientific notation, if-then-else expressions, and looping. The syntax for these functions is similar to

the syntax used in the C programming language. See the reference manual for a complete definition

of the calculator's syntax.

Two UNIX utilities, LEX and YACC, were used to implement the calculator program [5]. LEX

is a lexical analyzer program generator that can be used for simple lexical analysis of text. The user

provides a set of regular expressions and actions to be executed, and LEX generates a C program.

YACC is a parsing program generator. The user supplies a context-free grammar, which YACC

converts into a set of tables used by an LR(1) parsing algorithm [6]. In addition, the user can

specify precedents and associations to remove any ambiguities inherent in the original grammar.

YACC generates a C file that can be incorporated into a larger program. LEX and YACC greatly

simplify the programming of this parser and make it easy to add new functionality.

An Eq object receives a string as its input. When the Eq object is queried for its value, it

passes this string to the lexical analyzer module, which converts it into tokens. The token stream

is then passed to the parsing modules, which build up the appropriate parse tree. A pointer to the

top node of the parse tree is then returned to the Eq class where it is stored. This top object is

called an ntNode. The retrieval function in the Eq class then calls the evaluation function on the

ntNode, which returns a double-precision floating point number.

The ntNode class structure is based on a binary tree. Each node represents a number, a"binary

operator, a unary operator or function call, or a variable in the variable table. The tree gets

evaluated by calling the get function on the root node. The get function calls get functions on

the left branch followed by the right branch. When those calls return, the operation or function

represented by the node is executed. The result of the set of calls is the same as for a Reverse

Polish Notation (RPN) stack evaluation.

Additional types of nodes represent conditional statements. The evaluation of a condition

determines whether the left or the right branch of the tree is evaluated. An iteration node works

similarly.

Finally, there is a node to represent a statement block. This node is actually a collection of

several independent parse trees that are evaluated in series. The result of the final parse tree is, by

definition, the value of the statement block. In this way, complicated expressions can be simplified

by typing a series of subexpressions that assign values to temporary variables. These temporary

variables can then be used in the final expression.

Note that equations in variables act more like functions than statements because they are
reevaluated each time the value of the variable is used.

15

10 Graphical User Interface

The variable classes presented here are designed with an interactive user interface in mind. The Var

base class stores information such as labels that can be placed in input fields and help information

that can be displayed in dialog boxes.

A complete object-oriented graphical user interface framework that was developed on the basis

of these variable classes [7]. In this framework, all graphical objects are derived from the base

class UIComponent. Some additional functionality was added to the Vat base class to store related

UIComponents and to notify them when changes are made to a Var. Because multiple UICompo-

nents can be registered with a Var, the same data can be displayed in several places on the screen

simultaneously. For example, a VarNumeric can be displayed in a text field and in a plot at the

same time. In our framework, both views automatically update when a change is made to the data.

The update process works as follows: The constructor of a view (a UIComponent) is passed a

Var (var) that holds the data to be displayed. The constructor then calls va.r->addViow(this),

which adds the pointer to the UIComponent to a list of views stored in the Vat object. If the value

of var changes, it calls view-:mpdate() for all the views in its list. The update() method retrieves

the data from the Var object and changes the display. Note that the list of views in the Var class

is allocated only if needed; therefore, there is negligible overhead for the many variables that are

never displayed.
The destructor of the view class calls va.r->romoveView(th±s) to remove the view from the

Var's view list. The destructor of a Vat deletes all the views in its view list. If a user wants to

reuse a view for a different Var, the view should be removed from the old Var and added to the new

Var. This can save a significant amount of time (the user does not need to destroy and make a new

UIComponent), particularly if the view is complex--like a plot or a large text-editing program.

11 Interprocessor Communication

Variables and variable tables may need to be transferred between processes and perhaps between

machines in client/server, parallel, and other distributed applications. To facilitate this, the Var
classes have built-in member functions for packing and unpacking themselves to and from Parallel

Virtual Machine (PVM) message buffers. PVM is a public domain software package for passing

messages on a heterogeneous network of Unix computers.

Four functions have been added to a_ the Var classes. These are pvm_packall, pvm_unpacka11,

pyre_pack, and pyre_unpack. The first two of these functions pack and unpack the complete definition
of a Vat into and out of a PVM buffer. This includes name, type and size information, help string,

label string, and all data. The latter two functions just pack and unpack the Var name and data.

If passing a VarTable, these latter two functions will transfer only Var objects that have had their

value changed since the last transfer. This can greatly reduce the network's communication costs.

12 Reference Counting

Most simulations will have multiple instances of the same component class, each of which will have

a similar copy of a variable table. To help reduce memory requirements, the user creates shallow

copies of the variable tables. A shallow copy is a copy of an object that duplicates the attributes of

the original object but does not duplicate any data "pointed to" by the original object. This allows

multiple variables to share the help information, labels, equations (Eqs), and other information

16

without having to duplicate it. However, it poses a new problem: namely, it is no longer safe to

delete any data pointed to by a variable when a variable is destroyed or reassigned.

In addition, it is often convenient to place the same variable into more than one table or to

refer to it from more than one component object. When a table or component is destroyed, it is
unknown if it is safe to delete the variables contained within the table or component.

Leaving these data undeleted is an acceptable solution for small programs but will most likely

pose problems for larger problems. To solve this dilemma, we devised a reference-counting scheme.

This reference-counting scheme uses a reference count class and a smart pointer class. The count
class contains the number of references and has the methods to increment and decrement that count.

Certain operators have been overloaded, and virtual functions are provided to assist with object

allocation and to prevent direct access to the machine address of the object. When derived from

RefCount (either directly or indirectly), a user class inherits the attributes and methods to maintain

a reference count. Once reference counting is introduced in a hierarchy, all descendants will have

reference-counting characteristics.

12.1 The Pointer Class

The pointer class, Ptr<T>, has been given all the semantics of a pointer, and with a few notable

exceptions, can be used anywhere a regular pointer is expected. Smart pointers are used to point to

dynamically allocated instances of a user class for which reference counting is desired. The process

of initialization, assignment, and destruction of smart pointers includes the calling of increment

and decrement methods in the appropriate counted object.

Once declared, a Ptr<T> can be assigned the address of an instance of class T and can be used as

if it were a regular pointer to class T. For example, if we assume that userClass has been derived

from the RefCount class, the following code is legal:

Ptr<userClass> ptr = new userClass;

ptr->method(); // ptr can be used co access public members

ptr->attribute = 123;

cout << *ptr << "\n"; // ptr may be dereferenced

cout << ptr[O] << "\n"; // just as a normal pointer

ptr = NULL; // ptr may be reassigned

In this code segment, an instance of userClass is created on the heap. Because this is also an

initialization of ptr, the constructor Ptr<T> : :Ptr(T *) is called with the address returned by new.

This constructor sets the internal pointer to that address and ca/is a method within the userClass
instance that increases its reference count from zero to one. After the initialization of ptr, accessing

members and dereferencing occur as expected.

Before ptr is assigned a different value, the reference count of the current userClass instance
is decremented. In this example, the reference count goes to zero. When this occurs, the object

calls the delete operator with its own address as the argument: delete this;. The new address

is then assigned to ptr, and if not NULL, the reference count of the new instance is incremented.

Note that addresses are checked for equality before performing these actions. However, addresses

are not checked for validity; so, be careful!

An object can be deleted only through a call to decrPtrs(), which makes the reference count

zero. This call can only be done by the reassignment or destruction of a Ptr<T>i Once it is

determined that the object should be deleted, the state contained in the object is used to decide if

delete this or delete [] this should be issued.

17

Notice that if the address returned by the new operator is not assigned to any variable, there

will be an instance of userClass that has nothing referring to it. In this case, there is nothing that

can be done to deallocate the memory. This may not seem useful; however, it has the same behavior

as a noncounted object whose address is lost. With a counted object, however, a garbage collection

scheme could be introduced that looks for allocated objects with no references and deletes them.

This would be a distinct advantage over noncounted objects.

When an array of objects is dynamically allocated, the objects are given state information that

indicates the location of the object within the array. Regardless of where an object is in the array,

calls to incrPsrs () and decrPtrs() affect a single reference count. In this manner, the array

is treated as a single object; thus the entire array can be deleted when there are no longer any

references to any of its elements. This is consistent with the C/C++ notion of standard pointers;

reference to any one element of the array implies a reference to the entire array.

The position of an element within the array is not important until the result of a decrPl;rs()

call is zero. In order to properly delete the array, the user must send the address of the first element

as an argument to delete[-] this. The method Ptr<T>: :deleteThis() accomplishes this task.

Before calling delete, the state of the object is consulted. For an array, the state indicates the index
of the element. This value is used to determine the address of the first element from simple pointer

arithmetic. Once the first object is found, delel;e [] this is called.

This smart pointer class is smart only because it sends a message to increment or decrement a

counter. All the traditional pointer pitfalls remain. Reference through a NULLpointer is chief among

them. A list of pitfalls, cautions, and caveats introduced by the smart pointer implementation

follows:

• A Ptr<T> cannot be used as the argument of delete. The argument of delete must be a

nonconstant pointer; Ptr<T> is a class instance. Implicit conversion to T* is not allowed. To

delete the referenced instance, simply set all Ptr<T>'s that reference it to NULL.

• To allocate arrays of objects, the user must call an overloaded version of the global new

operator. To do this, the placement syntax is employed to pass the size of the class for

calculating the number of objects in the array. Notice the (ezpression) following new:

Ptr<userClass> p = new(sizeof(userClass)) userClass[lO];

• ptr++ and ptr-- must be done with care. The increment and decrement operators can take
the internal address outside the bounds of an object array. This will not cause immediate

problems. If, however, ptr goes out of scope or the user attempts to reassign ptr while the

internal address of ptr is outside the array bounds, the results will be undefined, ptr will

try to decrement the reference count at this point. A segmentation fault is imminent.

• Pointer arithmetic must be done with care. Addition and subtraction will cause immediate

effects. The returning of temporary instances of Ptr<T> will increment and decrement refer-

ence counts. Unlike ptr++ and ptr--, if pointer addition or subtraction results in an address

outside the bounds of an array, the effects will be immediate. This must be avoided to prevent

a run-time addressing exception.

12.2 Reference Counting Class

In this scheme, a counter is incremented and decremented to keep track of how many times an

object is being referenced. As long as the counter is not zero, the object remains in memory; when

18

the counter goes to zero,the objectis deleted.Therefore,ownership is not an issuebecause a.n

objectremains in memory only while itisneeded. The smart pointersdescribedpreviouslyare

used to referto counted objects.

There are two common ways to implement referencecounting. One way isto implement the

counteras an independentobject.Pointersreferto the counterobject,and the counterrefersto the

actualobject.The advantage to thismethod isthe easewith which itisappliedtoexistingclasses.

This makes it desirable for interfacing with an existing class library. One disadvantage is the

additional level of indirection needed to access the object. Another, more important, disadvantage

is the inabWty to take advantage of polymorphism. The counter class is completely unrelated to

the class hierarchy of the referenced object; therefore, a pointer to a derived class cannot be used

where a pointer to a base class is expected.

The other way is to include the counter directly in the object. Pointers, in this case, refer

directly to the object. The advantage here is that polymorphism can be used. Because the actual

object is referenced, it is possible to cast the smart pointer to a valid base class. The disadvantage

is that run-time type identification (RTTI) must be used for all pointer conversions; this slightly

reduces efiSciency. 1

The latter method has been chosen mainly to enable polymorphism. We also determined that

the reference counting behavior would be added to a class through inheritance. The class, called

RefCount, provides the necessary attributes and methods.

An object can be allocated statically (on the stack) or dynamically (on the heap). In the latter

case,class.name: :opera'cor new() iscalledtoallocatethe memory. RefCoun'c::operator new()

has been overloaded so that itsetsa globalflagto indicatea heap allocationand then callsthe

globaloperator new() to allocatethe memory. The constructorRefCount: :RefCoun'c()checks

thisflagand resetsitto itsdefaultvalue.The attributeRefCount ::state issetaccordingly.

When memory isallocatedfor an array of objects,itmust be deallocatedas an array.It is,

therefore,necessaryto differentiatebetween the two cases. Ifan array has been allocated,the

value of RefCount ::s'ca'cewillbe setto ins'c_HEAP_ARRAY+ element indez.This valueisused to

determinethe addressofthe firstelement ofan arraybeforecalling::opera'cor delete [](void*).

For thistooccur,the programmer must calla specialversionof the new operatorthatexpectsthe

sizeof the classpassed as an additionalparameter. At present,the placement syntaxforoperator

new() isused to callthisspecialversion,2 as mentioned earlier.

Because thereisa fundamental differencebetween a singleobjectand an array of objects,the

countermust be implemented intwo ways. For a singleobject,the count issimply an in'cstored

in the object.An array,on the other hand, must alsobe treatedas a singleobject:referencesfor

any element of the array must be talliedin a common count. This isdone by making the count

within the RefCount classa union of an £n'cand a pointerto an instanceof the classrefs.The

latterversionof the union isused ifan arrayof objectsisallocated.Each element of an arraywill

have the same pointervaluein the count union.All increment and decrement operationsmade on

an arrayelement are performed on the common count. The value ofRefCoun'c::state isused to

determine whether the count isan in'cor a pointer.

The currentimplementation of referencecounting requiresthe overridingof severalvirtual

functionsand a specialconstructorwithin each classthat employs referencecounting. Because

theseare fairlysimple,a setofmacros issuppliedthat shouldbe used in definingany classderived

from RefCount.

iThe proposedoperatordynamic.cast<t_/pe-name>(e.zpres#fon)willlikelyreducethisinefficiency.
2ANSI/ISOresolutionshaveintroducedtheabilitytooverloadoperatorhey[]().When thisimplementationis

availableincompilers,usingtheplacementsyntaxshouldbeunnecessary.

19

Currently, reference counting is used only for the Eq class. Note that we had added reference

counting to all Vat classes such that Vars will automatically delete themselves if they are no longer

used. However, the Ptr<T> template classes needed for all the different types of Vars caused huge

amounts of code to be generated, and this functionality had to be abandoned. We will most likely

reimplement reference counting for all Var classes once the size problem has been solved.

13 Concluding Remarks

An object-oriented variable table was created that provides a convenient way to define and catalog

data, as well as a user friendly input/output system, a standardized set of access functions, mecha-

nisms for ensuring data integrity, an interpretive language for programming relationships between

parameters, and methods for interprocessor data transfer. This object-oriented variable table has

proven to be an effective programming methodology for both interactive and batch applications.

Although name lookup functions are provided on the variable tables, they are required to locate

a variable the first time only. Subsequently, the variable can be accessed directly: Data integrity is

maintained because all variables are objects with their own data-access methods.

All the standard Var classes have built-in support for interprocessor communication and mul-

tiview graphical displays. In addition to the standard data types provided, a powerful template
class has been added so that other data types can easily take advantage of the variable table class

features.

Plans for future work include combining the calculator and input file parsers, resulting in a

more powerful programming language that is applicable to more than just the VarNumeric class.

Also, as indicated in section 12, automatic reference counting would be added to all Var classes as

an optional feature.

References

[1] Kroo, I.: A New Architecture and Expert System for Aircraft Design Synthesis. NASA Contract

NAGl-1052, 1990.

[2] Curlett, B.P.: A Generic Graphical User Interface for FORTRAN Programs. NASA TM-4543,

1994.

[3] Stroustrup, B.: The C-t-+ Programming Language. Second Edition, Addison-Wesley, treading,

Massachusetts, 1991.

[4] Coplien, J.O.: Advanced C-t--t-, Programming Styles and Idioms. Addison-Wesley, Reading,

Massachusetts, 1992.

[5]

[6]

Kernigham, B.W.; and Pike, R.: The UNIX Programming Environment. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1984.

Aho, A.V.; Sethi, R..; and Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley, Reading, Massachusetts, 1986.

[7] Curlett, B.P.; Haas, A.R.; and Naylor, B.A.: Adaptive Graphical User Interface Framework

for Object-Oriented System Simulations. NASA TM-106790, 1995.

20

Appendix A--Input Parser Grammar

The grammar for the variable table input files follows:

file-definition:

attribute-listopt variable-listopt assignment-listopt

attribute-list:

attribute

attribute-list attribute

attribute:

template -- string ;

attribute-name [number]opt = numberopt ;

attribute-name [number] opt = expression-listopt ;

attribute-name [number]opt - string-listopt ;

attribute-name:

attribute-token

identifier

attribute-token:one of

help label display rainmax default labels

option true false dir mask value

variable-list:

variable

variable-list variable

var Table

variable-list var Table

variable:

variable-head ;

variableDECL identifier-list;opt

variableDECL:

variable-head { attribute-listopt }

variable-head:

Var Type identifier [number] opt [number] opt

VarType: one of

Vat VarNumeric VarString VarFile

VarLink VarBoolean VarOp_ion

varTable:

var TabIe-head ;

typedefopt varTableDECL ;

21

var TableD E CL :

varTableDEFN identifile-listopt

var Table-include attribute-list variable-listopt

var Table-include:

var Table-type-name identifier

var TableDEFN:

varTable-head { attribute-listopt variable-listopt }

var Table-head:

VarTable identifier

assignment-list:
variable-assignment

assignment-list variable-assignment

variable-assignment:
variable-name = expression-list ;

varTabIe-name { assignment-Iistopt }

identifier-list:

identifier, identifier

identifier-list, identifier

ezpression-list:
nuTt_ber

expression

expression-list, expression

string-list:

string

string-list, string

Appendix B--Calculator Parser Grammar

The grammar for the calculator input files follows:

calculator-ezpression:
statement-list

expr

statement:

ezpression-statement
statement-block

22

statement-block:
{statement-list}

statement-list:

statement-listopt statement

expression-statement:

iteration-expression

if-then-else

simple-if

ezpr ;

expr:

variable = expr

variable - Assign
number

(expr)

function-call

operator-expression

logical-expression
variable

operator-expression:

expr operator expr

- expr

operator: one of

function-call:

function (ezpr)

function:one of

sin cos tan asin acos atan

sqrt exp

iteration-expression:

for-loop

while-loop

for-loop:

for (expropt ; expr ; expropt) statement

while-loop:

while (expr) statement

logical-expression:

expr ? expr : expr

23

expr logical-operator expr

logical-operator: one of

simple-if:

if (expr) thenopt statement

if-then-else:

simple-if else expression-statement

simple-if else statement-block

variable:

variable-name [ezpr] opt l'ezprl opt

variable-name:

identifier qualifieropt

qualifier: one of
•max .min .def

identifier:

opt IDENT
identifier IDENT

number:

NUMBER

' expr '
constant

constant: one of

pi e true false

24

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public repoaingburden for this collectionof informationis estimated to average 1 hou,r per .mspons.e.inc/udin,g the time Io¢ revl..ewtnltins=true,ions, searchingexisf,mgdata $ou.m_..
gatheringand maintainingthe data needed, and completing and reviewingthe coliscl_n of inlormalton. ,Senoco,mrnentsr.agaro=ngm_ ouroen estimate or any om_ as,p_..et trtls
colleclionof infom'mtlon.IncludingsuggestionsIor reducing this burden, to WashingtonHeadquarters _S_¢es. Directorste.vor Inl.ocmetionOperations_ Repoas, 1215 Jenerson
Davis Highway, Suite 1204. Arlington.VA 22202_ and to the Office of Managemanl and Budget,PapecwonkReductmnI.'rojecl (0704-0188). Wasntngton, t._ zu-ao_.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 1994

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Flexible Method for Inter-Object Communication in C++

6. AUTHOR(S)

Brian P. Curlett and Jack J. Gould

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Nadonal Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Adminismation

Washington, D.C. 20546-0001

3. REPORTTYPE AND DATES COVERED

Technical Memorandum

WU-505--69-50

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-9196

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 106315

11. SUPPLEMENTARYNOTES

Responsible person, Brian P. Curlett, organization code 2410, (216) 97%7041.

12a. DISTRIBUTION/AVAILABILITY STATEMI:NT

Unclassified -Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A method has been developed for organizing and sharing large amounts of information between objects in C++ code.

This method uses a set of object classes to define variables and group them into tables. The variable tables presented here

provide a convenient way of defining and cataloging data, as well as a user-friendly input/output system, a standardized

set of access functions, mechanisms for ensuring data integrity, methods for interprccessor data transfer, and an interpre-
tive language for programming relationships between parameters. The object-oriented nature of these variable tables
enables the use of multiple data types, each with unique attributes and behavior. Because each variable provides its own

access methods, redundant table lookup functions can be bypassed, thus decreasing access times while maintaining data

integrity. In addition, a method for automatic reference counting was developed to manage memory safely.

14. SUBJECT'TERMS

Computer programming; Data structures; Object programs; Software tools

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURtTY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

26
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Sld. Z39-18
298-102

_ _ o_"

8 e_ _a
_ _-_

IZ .,_

3

